Antennas and front-ends for GNSS receivers

RUAG Space antennas for satellite-born GNSS receivers are all designed to minimize satellite body interaction. We offer helix and Patch Excited Cup (PEC) antennas. The L-band helix has very low back radiation and can be used where the height is not a limiting factor. The PEC antenna can be delivered without corrugations (for lowest mass and size) or with corrugations (for further improved back radiation). High performance front-ends, LNAs and diplexer/filter, are available for the different GNSS frequency bands.

Our products are originally developed for GPS and Galileo use, but are also compatible with other navigation systems like Glonass, COMPASS and QZSS. The products are based on many years of experience from antenna and microwave products for telecom payloads and also from microwave instrumentation for scientific purposes.

Extended GNSS PEC Antenna

If you need improved performance with reduced spacecraft illumination, lowered cross-polarization and also reduced omni variation, the extended PEC antenna is your choice. The antenna is well suited for precise orbit determination (POD) applications, where antenna phase center stability is essential.

The antenna operates at all GNSS bands, from L5/E5a, E5b, L2 to L1/E1, and it has a near hemispherical coverage.

The antenna diameter is 200 mm, the maximum height is 87 mm and the mass is 735 g. It has a female SMA connector as RF interface. The SMA interface can face either sideways or directly into the spacecraft, i.e. possibility to use a straight or a 90 degree bend SMA.

Typical measured radiation pattern performance for the antenna is shown below; min/average/max gain envelope over the hemisphere for co- and cross-polar radiation.
GNSS PEC Antenna

For smaller spacecraft where the quadriifer helix antenna and the extended PEC anten-
na can be too high, a lower profile antenna is available. It also operates at all GNSS
bands, from L5/E5a, E5b, L2 to L1/E1. It is a PEC antenna with highly stable RF perfor-
mance over the GNSS frequency bands.

The antenna diameter is 160 mm, the maximum height is 55 mm and the mass is 325 g. It has a female SMA connector as RF interface.

It is designed to cope with very demanding vibration loads, as normally used for boom
mounted TT&C antennas.

Typical measured radiation pattern performance of the antenna is shown below; min/
average/max gain envelope over the hemisphere for co- and cross-polar radiation.

GEO GNSS PEC Antenna

This antenna is aimed towards use on geostationary
orbit (GEO) satellites. It is also a PEC antenna, but
with increased boresight gain.

The antenna operates at the GNSS L1/E1 band (also
able of Glonass G1 use).

The antenna diameter is 239 mm, the maximum
height is 179 mm and the mass is 715 g. It has a fe-
nale SMA connector as RF interface.

L1 PEC Antenna

For missions and applications requiring single fre-
quency antenna with low mass and volume this an-
tenna is a very good choice. It is also a PEC anten-
na.

The antenna operates at the GNSS L1/E1 band and
is also capable of Glonass G1 use.

The antenna diameter is 144 mm, the maximum
height is 35 mm and the mass is 220 g. It has a fe-
nale SMA connector as RF interface. The SMA in-
terface faces directly into the spacecraft.

Typical measured radiation pattern performance of the antennas is shown above: min/
average/max gain envelope over the hemisphere for co- and cross-polar radiation.
GNSS Helix Antenna

This quadrifilar helix design exhibits extremely low back radiation in order to minimize satellite disturbances. To achieve this, a special feeding technique reducing the back radiation by 5 - 10 dB is used. The antenna design is patent protected.

The antenna operates at GNSS frequencies from 1.176 GHz (L5/ E5a), 1.227 GHz (L2) to 1.575 GHz (L1/E1) and it has a hemispherical coverage.

The antenna diameter is 90 mm, the maximum height is 410 mm and the mass is 815 g. It has a female TNC connector as RF interface.

Typical measured radiation pattern performance of the antenna is shown below; min/average/max gain envelope over the hemisphere for co- and cross-polar radiation.

Test caps

Test caps/hats are available to all our GNSS antennas. The caps/hats for all antennas, except the L1 PEC antenna, are absorptive with a set coupling value (e.g. 10, 15, 20 dB etc.). The L1 PEC antenna test cap/hat is of a 0 dB coupling type.
GNSS Receiver Front-ends

RUAG Space has a range of GNSS receiver front-end products available and can further tailor variants if needed. The noise figure is excellent, based on low noise GaAs transistors giving simultaneous good return loss and excellent gain flatness. The LNAs are equipped with preselection filters, bandpass or multibandpass, custom made to different bandwidth, rejection & group delay requirements. Notches at radio frequency interferer frequencies can be added, for example Search&Rescue, as well as broadband lowpass filtering of e.g. X-band signals. The units can be delivered with black surface treatment for increased thermal emissivity when needed.

To date, more than 130 flight units have been delivered!

Existing models:

L10 has a single-frequency front-end. The GNSS L1/E1-signal is input to a bandpass filter. The signal is then amplified. +9V unregulated DC-power is received through the coaxial RF-output connector. A power conditioning board creates the necessary voltages for the RF-amplifier including linear regulation, filtering and transient protection. The electrical interface is one input and one output SMA connector.

L20 has a dual frequency front-end. A diplexer separates the GNSS L1/E1 and L2 signals from the common antenna port into two bandpass filters. The L1 and L2 signals are amplified in separate amplifiers. Linearly regulated and filtered +5V and -5V DC is received through the coaxial RF-output connectors. The electrical interface is one input and two output SMA connectors.

L30 has a triple-band selectivity front-end. The GNSS L1/E1, L2 and L5/E5a signals are input to a common port on a multibandpass filter. The bands are filtered individually, low noise amplified and output in a common port. +9V unregulated DC-power is received through the coaxial RF-output connector or a D-Sub connector. A power conditioning board creates the necessary voltages for the RF-amplifiers including linear regulation, filtering and transient protection. The electrical interface is one input and one output SMA connector.

LNA Performance Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>L10</th>
<th>L20</th>
<th>L30</th>
<th>L30, low NF High Gain Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels (BW)</td>
<td>L1: 1575.42 ± 5 MHz</td>
<td>L1: 1575.42 ± 10.23 MHz</td>
<td>L1: 1575.42 ± 8 MHz</td>
<td>L1: 1575.42 ± 4 MHz</td>
</tr>
<tr>
<td></td>
<td>L2: 1227.60 ± 10.23 MHz</td>
<td>L2, L5 incl. E5b: 1200.5 ± 40 MHz</td>
<td>L5: 1176.45 ± 7.5 MHz</td>
<td></td>
</tr>
<tr>
<td>Noise figure of unit (total incl. Pre-selection filters in high temp)</td>
<td>L1 meas: 1.9 dB @ 22°C</td>
<td>L1 meas: 1.4 dB @ 22°C</td>
<td>L1 meas: 2.2 dB @ 65°C</td>
<td>L1 meas 1.6 dB @ 60°C</td>
</tr>
<tr>
<td></td>
<td>L1 meas: 2.3 dB @ 65°C</td>
<td>L1 meas: 1.7 dB @ 65°C</td>
<td>L2, L5 incl. E5b meas. 2.3 dB @ 65°C</td>
<td>L5 meas 2.0 dB @ 60°C</td>
</tr>
<tr>
<td>Gain (total)</td>
<td>27 dB ± 1 dB</td>
<td>25.5 dB ± 1 dB</td>
<td>33 dB ± 1 dB</td>
<td>37 dB ± 1 dB</td>
</tr>
</tbody>
</table>

RUAG Space | Product Group Electronics
sales.electronics.usa@ruag.com
sales.electronics.europe@ruag.com
www.ruag.com/space